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Abstract The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren
today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have
supported life at or near the surface. This evidence has motivated National Aeronautics and Space
Administration and European Space Agency to prioritize the search for any remains or traces of organisms
from early Mars in forthcoming missions. Informed by (1) stratigraphic, mineralogical and geochemical data
collected by previous and current missions, (2) Earth’s fossil record, and (3) experimental studies of organic
decay and preservation, we here consider whether, how, and where fossils and isotopic biosignatures
could have been preserved in the depositional environments and mineralizing media thought to have been
present in habitable settings on early Mars. We conclude that Noachian-Hesperian Fe-bearing clay-rich
fluvio-lacustrine siliciclastic deposits, especially where enriched in silica, currently represent the most
promising and best understood astropaleontological targets. Siliceous sinters would also be an excellent
target, but their presence on Mars awaits confirmation. More work is needed to improve our understanding
of fossil preservation in the context of other environments specific to Mars, particularly within evaporative
salts and pore/fracture-filling subsurface minerals.

Plain Language Summary This paper reviews the rocks and minerals on Mars that could
potentially host fossils or other signs of ancient life preserved since Mars was warmer and wetter billions
of years ago. We apply recent results from the study of Earth’s fossil record and fossilization processes, and
from the geological exploration of Mars by rovers and orbiters, in order to select the most favoured targets
for astrobiological missions to Mars. We conclude that mudstones rich in silica and iron-bearing clays
currently offer the best hope of finding fossils on Mars and should be prioritized, but that several other
options warrant further research. We also recommend further experimental work on how fossilization
processes operate under conditions analogous to early Mars.

1. Introduction

The search for evidence of life on Mars is one of the outstanding scientific challenges of our time. Low tem-
peratures and pressures, intense ionizing radiation, oxidizing soil chemistry, and low levels of thermodynamic
water activity greatly reduce the possibility of life at the Martian surface today. However, extensive ancient
valley networks and sedimentary rocks laid down in the Noachian and Hesperian Periods of Martian history
(respectively, ~4.0–3.6 billion years ago [Ga] and ~3.6–3.0 Ga; Fassett & Head, 2011; Werner & Tanaka, 2011)
are suggestive of much more clement global conditions, including widespread liquid water at the surface.
The uncertain timing and duration of water availability are still debated and have important implications
for the potential viability, complexity, distribution, and preservation potential of any life that arose on early
Mars. Nevertheless, Noachian and Hesperian rocks have long been recommended as a target for fossils, that
is, the physical or chemical remains of organisms and their activities (e.g., McKay & Stoker, 1989). On Earth,
these remains are preserved as casts or molds in sediment, as mineral coatings or replacements, and as
surviving biominerals, organic matter, or stable isotopic signatures. Locating samples on Mars that are
likely to preserve such signals and studying them with appropriate instrumentation, both in situ and possibly
after returning them robotically to Earth, are now strategic priorities for both NASA (National Aeronautics
and Space Administration) and ESA (the European Space Agency). One of the primary objectives of
NASA’s Mars 2020 rover is to cache a variety of drill-core rock samples from astrobiologically promising
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paleoenvironments; some of these samples may be returned to Earth by subsequent missions for analysis
(Farley & Williford, 2017; Mustard et al., 2013). The ESA-Roscosmos ExoMars 2020 rover will also be equipped
to test technologies required for subsequent sample-return missions (Vago et al., 2017). Understanding how,
why, and where morphological, molecular, or isotopic biosignatures might have survived on Mars will signif-
icantly enhance the success of these missions by informing the selection of landing sites, rover traverse path-
ways, and sampling strategies.

There is no compelling evidence for life on Mars, now or in the geological past. However, there is now a very
strong case that the surface of early Mars was habitable. Orbital data reveal fluvial valley networks draining
thousands of square kilometers, exhumedmeandering and branched distributary channels, paleolake depos-
its in topographic depressions, and alluvial fans/deltas entering these lakes, all of which reflect sustained pre-
cipitation and subaqueous sediment transport during the Noachian and Hesperian periods (Cabrol & Grin,
1999; Fassett & Head, 2008; Goudge et al., 2016; Grant et al., 2008; Grotzinger, Gupta, et al., 2015; Malin &
Edgett, 2003; Metz et al., 2009; Moore & Howard, 2005). Some fan-shaped deposits, possibly deltaic, have
been interpreted as aligned along the shoreline of a large ocean (Di Achille & Hynek, 2010; DiBiase et al.,
2013) that would have covered the northern lowlands, although this is controversial. At Gale Crater, however,
the Mars Science Laboratory mission (Curiosity rover) has explored the sedimentary record of a Late
Noachian/Early Hesperian paleolake that persisted for thousands to millions of years, with evidence for mild
salinity, moderate pH, and local redox gradients (Grotzinger et al., 2014; Grotzinger, Gupta, et al., 2015;
Hurowitz et al., 2017). The presence of liquid water at the surface over this length of time implies a denser
atmosphere, which should also have minimized the radiation flux. Tantalizingly, these rocks contain organic
molecules (Freissinet et al., 2015) preserved under relatively reducing conditions (Grotzinger et al., 2014).
Such Noachian-Hesperian water bodies could have hosted microbial life, which was present on Earth during
this time interval (Grotzinger et al., 2014). There is experimental support for the long-standing idea that
meteorites could have transported viable microbial cells between the two planets, although the ecological
obstacles to continued growth on arrival may be considerable (Fajardo-Cavazos et al., 2005; Foucher et al.,
2010; Mileikowsky et al., 2000; Shuster & Weiss, 2005; Weiss et al., 2000).

The Martian surface has been cold and predominantly dry for at least the last three billion years (i.e., the
Amazonian Period, immediately following the Hesperian), but the subsurface could have sustained stable
reservoirs of geothermally heated liquid water for much of this time, representing a long-lived habitat that
could have exchanged living cells with shorter-lived habitats at the surface (Boston et al., 1992; Clifford
et al., 2010; Ehlmann et al., 2011; Fisk & Giovannoni, 1999; Thomas et al., 2017; Travis et al., 2003).
Transport from the surface would probably have been required to provide the initial inoculum or at least che-
mical precursors to life (e.g., Patel et al., 2015). Once established, however, a “deep biosphere” would have
been protected from the deteriorating conditions at the surface and able to persist far longer given indigen-
ous sources of energy and nutrients (Des Marais, 2010; Westall, Foucher, et al., 2015). Potentially analogous
subterranean ecosystems have been studied most intensively in the Witwatersrand Basin of South Africa,
where anaerobic microbial populations achieve densities of at least 103–104 cells/mL at depths of 3–4 km
(Lin et al., 2006; Moser et al., 2005). Life in this setting appears to have been isolated from the surface for mil-
lions of years (Lin et al., 2006) and relies largely on abiotic carbon sources and electron donors, the latter
dominated by molecular hydrogen supplied by water-rock reactions (Lin et al., 2005; Sherwood Lollar
et al., 2006). There is clear evidence that such reactions occurred on Mars, including the presence of the
mineral serpentine at the Martian surface and in Martian meteorites (Blamey et al., 2015; Changela &
Bridges, 2011; Ehlmann et al., 2010). The putative detection of intermittent traces of methane in the
Martian atmosphere—which could be a product of water-rock reactions or even of hydrogen-oxidizing
microbes themselves—may imply the persistence of a habitable environment into geologically recent time
(Krasnopolsky et al., 2004; Mumma et al., 2009; Webster et al., 2015).

It is thus highly likely that various Martian paleoenvironments were habitable, and plausible that they were
inhabited, but could they have preserved fossils? On Earth, most organisms fail to fossilize because their
remains are physically destroyed, chemically oxidized or dissolved, digested by their own enzymes, or con-
sumed by other organisms. Fossilization only occurs when processes of preservation outpace degradation
(Allison, 1988). Fossilization usually begins when organisms are buried in sediment or entombed in minerals,
fixing their remains in place, and reducing their exposure to degradative processes including heterotrophic
consumption (animal, fungal, or bacterial). Minerals may replicate the morphology of the buried organism,
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cement the sediment around it, or fill the remaining void following decay. Microbes commonly self-fossilize
by entombing themselves in the mineral byproducts of their own metabolic activity (see section 4). Organic
cells and tissues are usually short lived, but they can serve as a template for the nucleation of more perma-
nent minerals or their precursors, which in turn can stabilize the original organic matter, particularly when
clay minerals form (Gabbott, 1998; Naimark, Kalinina, Shokurov, Markov, et al., 2016). Organic material can
also survive when passively entombed by rapid precipitation, as in Precambrian marine cherts and
Phanerozoic hydrothermal sinters (e.g., Campbell et al., 2015; Pancost et al., 2006; Schultze-Lam et al.,
1995; Yee et al., 2003). Organic molecules with robust chemical backbones can be indicative of general or
specific biological origins (i.e., “biomarkers” or “molecular fossils”) and are common in fine-grained sedimen-
tary rocks (Peters et al., 2005; Summons & Lincoln, 2012).

The same high-radiation and oxidizing conditions that limit the habitability of the Martian surface today
would also destroy exposed organic remains. The average galactic cosmic ray dose rate measured in Gale
Crater was ~0.2 mGy/day (Hassler et al., 2014); energetic particles associated with solar flares and coronal
mass ejections can occasionally produce dose rates orders of magnitude higher, and the UV flux combined
with strong oxidants also destroys organic matter (e.g., ten Kate et al., 2005; Wadsworth & Cockell, 2017).
Although the exact nature of the early Martian climate is still uncertain, the Noachian-Early Hesperian radia-
tion flux was attenuated by a thicker atmosphere that supported stable liquid water at the surface (Grotzinger
et al., 2014; Mahaffy et al., 2015), and potentially also by an Earth-like magnetic field, although this may have
been lost by the early Noachian (e.g., Lillis et al., 2013). The strong oxidants presently in Martian soil may have
been less concentrated or absent in the wetter conditions and milder radiation environment, although chlor-
ine isotope measurements by the Curiosity rover in Gale Crater suggest perchlorate production during the
Hesperian (Carrier & Kounaves, 2015; Farley et al., 2016). Any organisms dwelling on early Mars would there-
fore presumably have been degraded primarily as a result of biological heterotrophy and enzymatic autolysis,
as on Earth. Although low temperatures and a lack of burrowing or grazing animals would have inhibited
decay and favored preservation, any fossil record on Mars would be biased toward robust, decay-resistant
biological materials, such as biominerals/organominerals (Perry et al., 2007) or thick microbial sheaths, and
toward environments that promoted preservation. Favorable circumstances for preservation would have
included rapid burial, a high accumulation rate of organic remains, the presence of mineralizing fluids, and
the inhibition of decay. Research on the nature, distribution, and quality of fossils representing both
microsoft- and macrosoft-bodied organisms on Earth, supported by decay experiments on cells and
tissues and the environmental conditions required to preserve them (“experimental taphonomy”; Briggs &
McMahon, 2016), provides essential guidelines to the minerals, lithologies, and facies most likely to host
microbial fossils on Mars (Table 1).

2. Potentially Fossiliferous Rocks and Minerals on Mars
2.1. Secondary Minerals in Basalt

The likelihood that the surface of Mars has been dry for the last several billion years has directed attention to
the habitability of fractures and pores in deep basaltic rocks and sediments, where liquid water may have
been sustained by geothermal heat (e.g., Cockell, 2014a, 2014b; Hays et al., 2017; Michalski et al., 2013).
However, the potential for preserving fossils within the secondary minerals that form in such rock-hosted
habitats remains unclear. Microscopic textures in basalt, ranging from simple filled or unfilled pits to elabo-
rate helical “tunnels,” are widely reported as “bio-alteration” features or microbial “trace fossils” (e.g.,
McLoughlin et al., 2009; Staudigel et al., 2008; Thorseth, 2011), but in most cases an abiotic origin cannot
be excluded (Fisk et al., 2013). More compelling are reports of filamentous and rod-shaped structures miner-
alized in basalt void space on Earth by low-temperature submarine or subterranean hydrothermal activity
(e.g., Cavalazzi et al., 2011; Hofmann & Farmer, 2000; Ivarsson et al., 2016; McKinley et al., 2000; Peckmann
et al., 2008; Schumann et al., 2004). Such structures range frommicrometer to millimeter in scale and are typi-
cally preserved three-dimensionally in clay, iron oxides, and other minerals within open- or mineral-filled vesi-
cles and fractures. Some appear to have been mineralized in anoxic conditions (e.g., Bengtson et al., 2017;
Ivarsson et al., 2016; Schumann et al., 2004). Unfortunately, it has not been demonstrated that any of these
structures represent Mars-relevant chemoautotrophs. Indeed, subsurface productivity on Earth is strongly
dependent on the heterotrophic remineralization of carbon originally fixed at the surface by photosynthesis
(Kallmeyer et al., 2012; McMahon & Parnell, 2014). As such, the bulk of Earth’s massive deep biosphere, and
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presumably also its fossil record, is a poor analog for any ancient or modern Martian equivalent which, in the
absence of a productive surface biosphere, would be much smaller and dominated by chemoautotrophs,
not heterotrophs.

Lithoautotrophic communities in deep groundwaters in South Africa and the Canadian Shield are more rele-
vant to scenarios for life on Mars (e.g., Moser et al., 2005; Onstott et al., 2009). However, these stagnant aqui-
fers have chemically equilibrated with their mineralogical environment following long isolation from the
surface (Lippmann et al., 2003; Holland et al., 2013) and are therefore unlikely to mineralize actively except
during rare tectonic events (McNutt et al., 1990; Sherwood Lollar et al., 2007). To our knowledge, there are
no reports of mineralized cells found at these sites nor any definitive fossil record from elsewhere of ancient
microbial ecosystems analogous to these. Mineralized fractures and void spaces are difficult to resolve and
interpret at the spatial scale of orbital data fromMars, and even on Earth probably do not usually yield robust
indigenous biosignatures. A better understanding of the distribution, degradation, and preservation of Mars-
relevant microbes in Mars-relevant subsurface environments is therefore needed before landing sites can be
selected to search for a fossil deep biosphere on Mars.

2.2. Evaporite Salts

Evaporite salts, including Ca/Mg/Fe/Al-sulfates and chlorides, are widespread in basins on Mars, commonly
occurring in Noachian and Hesperian-aged terrains (Ehlmann et al., 2016; Gendrin et al., 2005; Glotch et al.,
2010; Murchie et al., 2009; Osterloo et al., 2008; Wray et al., 2011). In some cases, these salts are associated
with paleoenvironments inferred to be playa like or lacustrine with strong potential for habitability
(Ehlmann & Edwards, 2014; Grotzinger et al., 2005), although salinities may have been so high in Mg-sulfate
brines as to render them uninhabitable (Knoll & Grotzinger, 2006; Tosca et al., 2008). Such evaporite minerals
have the potential to trap organisms and preserve them as organic fossils which, like those in chert (see
below), are readily visible in transmitted light. Gypsum-permineralized carbonaceous microfossils interpreted
as algae and bacteria, the latter comparable to anaerobic nitrate-reducing sulfide oxidizers, have recently
been found in Permian, Miocene, and recent evaporites (Pierre et al., 2015; Schopf et al., 2012). Calcified
organic-rich microbial filaments have also been found in Miocene gypsiferous stromatolites (Allwood et al.,
2013; see section 2.3 below for discussion of stromatolites). It has been suggested that fluid inclusions in
halite may preserve viable microbial cells over ~100 Myr, although this is controversial because of well-
founded doubts that such cells could repair DNA damage induced by natural radiation over these timescales
(Fish et al., 2002; Jaakkola et al., 2016; Satterfield et al., 2005; Vreeland et al., 2000). More research needs to be
done on potential controls on the presence and long-term persistence of morphological and molecular fos-
sils in evaporites before prioritizing these minerals in landing-site selection. However, vertical and lateral pat-
terns in sulfates and other salts in lacustrine environments can record important information about
paleoenvironmental and physiochemical conditions (Bristow & Milliken, 2011). Thus, lacustrine evaporites
would be a target for sampling if encountered in the course of a rover traverse, especially if associated with
other evidence for habitable water chemistry.

Both Curiosity and Opportunity have also encountered sulfate veins in postburial fractures (Caswell &
Milliken, 2017; Vaniman et al., 2014), representing diagenetic precipitates from briny groundwater rather than
bottom-nucleated growth at the sediment-water interface, the common style of evaporitic deposition on
Earth. The potential for such vein sulfates to yield biosignatures is not well understood.

2.3. Phosphate and Carbonate

Laminated and nodular phosphates, and to a lesser extent carbonates, are important sources of well-
preserved fossil microbes and organic matter on Earth (e.g., Figure 1a; Knoll et al., 1993; Morais et al., 2017;
Xiao et al., 2014). Unfortunately, similar deposits have not yet been identified on Mars. Small amounts of
phosphorus have been detected at Gale Crater, both as igneous-sourced detrital crystalline apatite in sand-
stone and as a component of an amorphous/poorly crystalline phase in mudstone, which may be secondary
(Forni et al., 2015; Rampe et al., 2017). Magmatic and metasomatic phosphate also occur in Martian meteor-
ites, as do trace amounts of carbonate. Carbonate in the soil at the Phoenix landing site is considered to have
formed in situ recently from CO2 dissolved in thin water films (Boynton et al., 2009); it is absent or below
detection limits at Gale Crater (Bristow et al., 2017). Climate models indicate that temperatures would
have been too low under the “faint young Sun” to sustain large volumes of water on early Mars without
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abundant atmospheric CO2, conditions that would have promoted widespread carbonate mineralization,
particularly as basalt would have buffered pH (Niles et al., 2013; Wordsworth, 2016). Thus, the lack of
bedded carbonate on the Martian surface is difficult to reconcile with the abundant evidence for wet
conditions in the Noachian-Hesperian. The early Martian atmosphere may have been warmed by other
greenhouse gases with minimal contribution from CO2 and hence insignificant carbonate formation (e.g.,
Bristow et al., 2017). Alternatively, large carbonate deposits may be concealed beneath alteration
assemblages, lava flows, or soil (Clark, 1999) and have yet to be discovered; indeed, isolated carbonates
formerly buried to several kilometers have been detected in craters (Michalski & Niles, 2010; Wray et al.,
2016). However, the origin of these carbonates is not clear, and impact metamorphism might have
damaged biosignatures in such exposures.

Despite the apparent lack of bedded carbonate on Mars, carbonates formed at low temperatures (~18°C) are
present in the ~4.1 Ga Martian meteorite ALH84001 (Halevy et al., 2011). In addition, carbonates of possible
hydrothermal origin offer an alternative target for biosignature detection. The Mars Reconnaissance Orbiter
identified magnesium carbonate associated with olivine and clays in the Nili Fossae region (Ehlmann,
Mustard, Murchie, et al., 2008), and Spirit discovered carbonate-rich (16–34 wt %) outcrops (named the
Comanche outcrops) of similar composition in Gusev Crater (Morris et al., 2010). These carbonates probably
formed through the aqueous alteration of mafic precursors by hydrothermal activity. The evidence for hydro-
thermal activity in Gusev Crater may indicate a genetic similarity between the carbonates there and
volcanism-related, nonmarine, Mg-rich travertines on Earth. Some young travertines yield organic biomarkers
(e.g., Jorge-Villar et al., 2007) and microbial microfabrics (Riding, 1991). Submarine carbonate vent chimneys
can likewise preserve molecular fossils as well as isotopic biosignatures (e.g., Brazelton et al., 2006; Lincoln
et al., 2013; Méhay et al., 2013;).

Molecular, microfossil, and isotopic biosignatures in carbonates are vulnerable to damage by fluid through-
flow, chemical alteration, and recrystallization over geological time. Young hydrothermal carbonates contain

Figure 1. Terrestrial fossils that inform the search for life on Mars: (a) Calcified cyanobacterial sheaths (Girvanella) in limestone, upper Cambrian Campbell’s Member,
western Newfoundland. Image courtesy of S. Pruss, Smith College. (b) Stromatolites in chert, Archean Strelley Pool Formation, Western Australia. (c) Stromatolites in
limestone, Paleoproterozoic Rocknest Formation, Wopmay Orogen, northwest Canada. (d) Stromatolites in sandstone, Neoproterozoic Witvlei Group, Namibia.
(e) Filamentous and coccoidal microfossils in chert, Paleoproterozoic Gunflint Formation, Ontario, Canada. Image courtesy of A. H. Knoll, Harvard University. (f) Mat-
forming colonial coccoidal cyanobacteria in chert, Neoproterozoic Min’yar Formation. (g) Wrinkle structures in siltstone draped over conglomerate, middle Cambrian
March Point Formation, western Newfoundland. Image courtesy of S. Pruss, Smith College. (h) Organically preserved cyanobacteria (Symplassosphaeridium sp.)
macerated from shale, upper Mesoproterozoic Iqqittuq Formation, Arctic Canada. Image courtesy of H. Agić, University of California, Santa Barbara. Scale bar:
(a) 200 μm, (e) 75 μm, (f) 625 μm, (g) 60 mm, and (h) 120 μm. The scale of Figures 1c and 1d is indicated by a Swiss army knife, hammer, and lens cap, respectively.
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cellular and molecular fossils (e.g., Zhang et al., 2004), and cellular preservation by iron and carbonate miner-
als has been reported from Jurassic travertines where Ostwald ripening of calcite seems to have inhibited
diagenetic alteration (Potter-McIntyre et al., 2017). Precambrian travertines lack such biosignatures, which
may reflect sustained alteration processes on Earth that would be less severe on Mars (Brasier et al., 2013; see
section 5 below). However, these rocks do commonly contain stromatolites, that is, layered conical, domal,
columnar, or branching macroscopic growth structures attached to a surface and formed by carbonate pre-
cipitation and/or the trapping and binding of sediment (Figures 1b–1d; Bosak et al., 2013; Grotzinger & Knoll,
1999; Riding, 1999). Microbes are commonly implicated in these processes, but it has long been clear that not
all stromatolite-like features are necessarily biological, especially those formed by precipitation (rather than
trapping and binding). This complicates the interpretation of Precambrian precipitated stromatolites and
those that have undergone substantial diagenesis (Allwood et al., 2009; Grotzinger & Knoll, 1999;
Grotzinger & Rothman, 1996). Triangular structures exposed perpendicular to bedding on a weathered, heav-
ily metamorphosed carbonate in the Isua Supracrustal Belt in Greenland, for example, which were interpreted
by Nutman et al. (2016) as Earth’s earliest stromatolites, are morphologically ambiguous (their 3-D structure is
unreported) and lack organic carbon or other evidence to confirm biogenicity.

Although microfossils are rare in carbonate stromatolites, studies of Precambrian examples and modern ana-
logs have identified structures and morphologies with a high potential to record biological activity (e.g.,
Allwood et al., 2006; Beukes & Lowe, 1989; Bosak et al., 2009, 2010; Dupraz et al., 2004; Grey, 1994;
Hoffman, 1976; Jones et al., 1997, 1998; Komar et al., 1965; Reid et al., 2000; Sim et al., 2012; Sumner, 1997).
Only recently, however, through a combination of theory, experiment, and field observations, have we begun
to understand the processes that produce robust morphological biosignatures in macroscopic stromatolite-
like structures as old as three billion years (Batchelor et al., 2000; Batchelor et al., 2004; Batchelor et al., 2005;
Bosak et al., 2013; Cuerno et al., 2012; Dupraz et al., 2006; Mariotti, Perron, et al., 2014, Mariotti, Pruss, et al.,
2014; Petroff et al., 2010, 2013; Sim et al., 2012; Walter et al., 1976) or in microscopic textures (Bosak et al.,
2009; Bosak et al., 2010; Bosak et al., 2013; Mata et al., 2012). Although most stromatolites are too small to
be identified remotely, they would be readily observable by a rover on Mars and would be a prime target
for astrobiological sampling. More generally, however, further research is needed to clarify the potential
for biosignature preservation in carbonates similar to those so far encountered on Mars.

2.4. Hydrothermal Silica

Hydrothermal systems, both at and below the paleosurface, have long been recognized as likely habitable
sites with the potential to preserve fossils (e.g., Farmer & Des Marais, 1999; McKinley et al., 2000; Walter &
Des Marais, 1993). Some Noachian terrains are inferred to record mineral alteration by hydrothermal fluids
that passed through the Martian upper crust prior to excavation by impact cratering (Ehlmann et al., 2009,
2011; Michalski et al., 2013). The thermal afterglow of impacts themselves can drive hydrothermal circulation
in the vicinity of craters (Osinski et al., 2013), which may produce postimpact silica and sulfate veins, as well as
Al-rich clays (e.g., as revealed in Endeavour Crater by the Opportunity rover; Arvidson et al., 2014). A recent
global survey of crater central peaks using Mars Reconnaissance Orbiter data has shown that ~22% of those
with hydrated minerals show spectral evidence for hydrated (opaline) silica associated with uplifted materi-
als, possible impact melt deposits, and various unconsolidated materials (Sun & Milliken, 2015).

Silica dissolved and mobilized at depth stays in solution at high temperatures, but the expression of
hydrothermal systems at the cool sediment-water or sediment-atmosphere interface induces rapid, massive
surface precipitation. The resulting sinter deposits typically preserve microbial filaments as silicified casts,
molds, and coatings, often in such density and abundance that they constitute a large fraction of the rock
and determine its macroscopic texture (e.g., Cady & Farmer, 1996; Munoz-Saez et al., 2016; Trewin et al.,
2003). Young examples yield a wide range of lipid biomarkers representative of hot spring organisms (e.g.,
Gibson et al., 2008; Kaur et al., 2008; Pancost et al., 2006). Other biosignatures can include fenestrae represent-
ing silicified bubbles of microbially generated gases (Bosak et al., 2009, 2010; Mata et al., 2012) and
millimeter-scale laminated fabrics arising from the interplay of biofilms and silicifying fluids (e.g.,
Konhauser et al., 2004). Opaline siliceous sinter transforms to solid microcrystalline or cryptocrystalline forms
(cristobalite, tridymite, and quartz, i.e., chert) during burial, which may preserve the organic remains of eukar-
yotes and prokaryotes at submicron resolution. The best-known example is the Devonian (~410 Ma) Rhynie
Chert in Scotland, which preserves plants, animals, fungi, and bacteria entombed and permineralized with
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silica (Trewin, 1993, 1996) and yields well-preserved organic biomarkers (e.g., Preston & Genge, 2010; Qu
et al., 2015). Finely laminated Archean cherts containing hydrothermally silicified biofilms also preserve some
organic matter, but the high metamorphic grades of these rocks (Westall, Campbell, et al., 2015) ensure that
any molecular biosignatures have been erased. Curie point pyrolysis of an Archean chert from the
Warrawoona Formation of the Pilbara Craton in Western Australia yielded alkane/alkene doublets with a
slight odd/even preference (Derenne et al., 2008), an indisputable biosignature. However, given the meta-
morphic grade of rocks from the locality (Flannery et al., 2018) and the possibility of contamination from con-
temporary surface-dwelling microbes, results such as this should be viewed with caution. Nevertheless,
cherts formed on early Mars would not have been subjected to such intense metamorphism and may retain
biosignatures in contrast to similar rocks on Earth (see section 5).

Silicification of organic remains involves the bonding of silicic acid to organic cell walls or envelopes, ensuring
long-term stability (e.g., Knoll, 1985). Experiments have confirmed that diverse archaeal and bacterial extre-
mophiles and even viruses silicify readily in silica saturated solutions, with minimal dependence on
cell/substrate type, pH, or salinity (Orange et al., 2009, 2013, 2014; Westall et al., 1995; Westall, 1997). Such
results suggest that silicification could outpace cell lysis and degradative processes in brines on early Mars
(e.g., Harrison et al., 2016; Toporski et al., 2002; Yee et al., 2003).

Besides occurring in hydrothermal settings, amorphous silica is expected to be present on Mars as a result of
low-temperature chemical weathering of basalt (McLennan, 2003; Tosca et al., 2004), and orbital and in situ
observations have shown it to be widespread (Milliken et al., 2008; Squyres et al., 2008; Sun & Milliken, 2015).
It may be challenging to differentiate hydrothermal silica from silica enrichment by in situ weathering pro-
cesses (potentially including “acid fog”; Tosca et al., 2004); such weathered rocks may be aggressively altered
and are not expected to preserve biosignatures. Silica-rich deposits near the remotely observed Nili Patera
caldera have been suggested to represent ancient hydrothermal systems, although not necessarily formed
at the surface, based on their setting and distribution (Skok et al., 2010). Siliceous material examined by
the Spirit rover in Gusev Crater has also been interpreted as a hydrothermal deposit, although other explana-
tions of its chemical composition are possible (Squyres et al., 2008). Stratiform, “rubbly” nodules of opaline
silica in Gusev Crater have been considered morphologically comparable to digitate, biologically influenced
sinter nodules produced in shallow water at the El Tatio volcanic spring in Chile, which are rich in preserved
microbial filaments (Ruff & Farmer, 2016). However, the simple digitate appearance of these nodules could
arise from abiotic processes (aggregation, concretionary growth, sedimentation, and/or weathering) and
is not in itself a biosignature or even definitive evidence of hot spring deposition (Anderson, 1930;
Grotzinger & Knoll, 1999; McLoughlin et al., 2008). Nevertheless, true hot spring sinters on Mars would repre-
sent an excellent search target for silicifiedmicrofossils and organic matter from a paleoenvironment likely to
have been habitable. Perhaps, themost promising location for preservation in silica identified to date onMars
occurs at Gale Crater, where a 5–10-m-thick interval of lacustrine strata in the Murray Formation is enriched in
silica (see below).

2.5. Chert and Silicified Sediments

Bedded and nodular marine cherts on Earth, which are a diagenetic product of amorphous silica precipitated
at or just below the seafloor, represent a major source of well-preserved microfossils, particularly of
Precambrian age (e.g., Barghoorn & Tyler, 1965; Schopf, 1968; Schopf et al., 2008) when pore waters became
silica saturated in the absence of silica-secreting organisms (Maliva et al., 2005; Siever, 1992). This led to rapid,
early (perhaps syndepositional) silica precipitation that formed a rigid, impermeable solid material, resistant
to later fluid alteration (Bartley et al., 2000; Ramseyer et al., 2013; Stolper et al., 2017). Such silica-rich rocks on
Earth, especially where amorphous content is high, can result in good or even spectacular preservation of
cells and colonies (Figures 1e and 1f); dozens of examples are known from the Proterozoic (Schopf & Klein,
1992), including the iconic, densely packed assemblages of filamentous and coccoidal bacteria in the
Gunflint Formation (Ontario, Canada, ~1.9 Ga) and the Bitter Springs Formation (Central Australia,
~850 Ma). The Archean record is more haphazardly preserved, probably because of ubiquitous hydrothermal
and metamorphic overprinting and recrystallization. Chert (including early replacive chert after carbonate) is
the dominant preserving medium of most purported microfossils older than 2.5 Ga (Schopf, 2006, and
references therein), although most of these are controversial (Brasier et al., 2006). Historically, however, there
has been a lack of attention to siliciclastic lithologies, which have recently begun to prove fruitful (Javaux
et al., 2010; Wacey et al., 2011).
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On Mars, the aqueous alteration of basaltic crust is thought to have sup-
plied abundant silica to rivers and lakes (McLennan, 2003; McLennan &
Grotzinger, 2008). As on Earth, this silica could have solidified very early,
providing an ideal medium for the preservation of any microorganisms
living in the water column, on the lake floor, or in shallow subsurface
sediment. Opaline silica has been observed from orbit in laterally contin-
uous, well-stratified deposits adjacent to the Valles Marineris canyon
system, and in some cases these deposits occur as inverted channel sys-
tems (Milliken et al., 2008; Weitz, Milliken, et al., 2008; Weitz et al., 2010).
Silica has also been observed in strata associated with potential subla-
custrine fans within Melas Chasma (Metz et al., 2009) and in closed
basins in the Noctis Labyrinthus region (Thollot et al., 2012).

More recently, the Curiosity rover recovered evidence for sedimentary
silicification in silica-rich mudstones in the Marias Pass area of Gale
Crater where the lower Murray Formation forms a thick sequence of
lacustrine mudstones that interfingers and overlies fluvial-deltaic sand-
stones and conglomerates (Grotzinger, Gupta, et al., 2015; Morris et al.,
2016; Hurowitz et al., 2017; Rampe et al., 2017). The grain size is below
the limit of resolution (<60–70 μm) of the Mars Hand Lens Imager,

and parallel stratification with a mean lamina thickness of about ~0.5 mm extends laterally for at least several
tens of centimeters (Figure 2). Quiescent subaqueous deposition is further evidenced by the absence of cross
stratification, mudcracks, or any evidence for transport, erosion, or reworking. The “Buckskin” rock drilled by
the Curiosity rover is characterized by ~40 wt % crystalline and ~60 wt % X-ray diffraction amorphous mate-
rial, and a bulk composition of ~74 wt % SiO2. The crystalline silica comprises trydimite and cristobalite with a
bulk rhyolite-like composition, suggesting a felsic volcanic provenance for the sediment (Morris et al., 2016).
The amorphous material is silica rich, ~39 wt % opal-A and/or silica glass and opal-CT, and most likely repre-
sents an authigenic lacustrine precipitate or diagenetic alteration product (Hurowitz et al., 2017; Morris
et al., 2016).

Such a facies of finely laminated, fine-grained silica-rich mudstone, with substantial amorphous silica, may
represent a favorable context for microfossil preservation. Early lithification would have sealed the rock
(and any contained fossils) from later fluids that oxidized other parts of the Murray Formation (Hurowitz
et al., 2017; Rampe et al., 2017). The presence of magnetite of probable authigenic origin in one drill hole
(rather than hematite as in 14 others spread over ~150 m of section) signifies a lower degree of oxidation
in either the primary or diagenetic environment, or both (Grotzinger, Crisp, et al., 2015; Hurowitz et al.,
2017; Morris et al., 2016; Rampe et al., 2017; Vaniman et al., 2014). Indeed, magnetite as well as some of
the hematite in Gale Crater could have formed by redox-related primary precipitation, a process conducive
to the preservation of cellular fossils (Fraeman et al., 2016; Hurowitz et al., 2017). Iron oxides can also adsorb
silica and enhance silica precipitation, further strengthening the potential for preservation (Meister et al.,
2014). The occurrence of a silica-magnetite mudstone facies in part of the Murray formation demonstrates
the potential for finding similar types of sedimentary rocks in lacustrine settings elsewhere on Mars, provid-
ing a strong candidate for sample return.

2.6. Siliciclastic Sediments

Orbiter-obtained geomorphological evidence for siliciclastic facies on Mars indicates alluvial fan, fluvio-
deltaic, sublacustrine fan, and aeolian deposits (e.g., Dromart et al., 2007; Malin & Edgett, 2003; Metz et al.,
2009; Milliken et al., 2014; Moore & Howard, 2005). Rover observations confirmed the presence of proximal
to distal fluvial, deltaic, lacustrine, and aeolian facies (Grotzinger et al., 2005; Grotzinger et al., 2014; Lewis
et al., 2008; Williams et al., 2013). The organization of fluvial systems at Gale Crater shows facies transitions
analogous to terrestrial “source-to-sink” networks leading to accumulation of lacustrine mudstones hundreds
of meters thick (Grotzinger, Gupta, et al., 2015; Szabó et al., 2015; Fedo et al., 2017). Fluvial channel sediments
represent high-energy depositional environments where the chances of preserving fossils are poor, although
allochthonous biosignatures may result from reworking, transport, and sometimes concentration, for exam-
ple, in fossiliferous clasts, by fluvial processes. Distal deltaic, lacustrine, shoreline and subtidal deposits, on the

Figure 2. Photograph taken by the Curiosity rover of “Lamoose” target, a
float block from the Murray Formation, Gale Crater, Mars. It is minimally
dust covered (reddish tone) and sculpted by wind to reveal very fine
lamination (here oriented upper left to lower right) and fine grain size.
Wind-induced surface striations trend obliquely to the primary depositional
lamination. Scale bar: 1 cm.
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other hand, could preserve a wide range of sedimentary microbialites (Figures 1d and 1g), morphological
fossils (Figure 1h), and/or organic biosignatures (e.g., Ehlmann, Mustard, Fassett, et al., 2008; Summons
et al., 2011; Grotzinger et al., 2014).

Siliciclastic sediments are texturally and chemically diverse and preserve fossils in a variety of modes. Fine-
grained and clay-rich siliciclastic lithologies are associated with some of the best preservation of microbes
and soft-bodied eukaryotes on Earth (e.g., Butterfield, 1990, 1995; Callow & Brasier, 2009; Farmer & Des
Marais, 1999; Javaux & Knoll, 2017; Yuan et al., 2011), including those of Archean age (Javaux et al., 2010).
The low permeability of fine-grained sediments limits diffusion away from decaying remains once they are
buried and favors the precipitation of authigenic minerals such as carbonate, pyrite, and phosphate. These
minerals can replicate cells and tissues and/or cement the grains around them into concretions or high-
resolution molds, a process that has been studied experimentally (e.g., McCoy et al., 2015). The charged sur-
face area of sedimentary clay minerals adsorbs and retains organic matter; the organic carbon content of
marine mud and ancient shales correlates strongly with the total surface area of clay minerals within these
lithologies (e.g., Hedges & Keil, 1995; Kennedy et al., 2002), particularly in sediments rich in smectite
(Ransom et al., 1998). Cyanobacteria become coated with clay minerals in less than a week in experiments
with sand, silt, dissolved silica, and suspended clays (Newman et al., 2016, 2017), ultimately resembling
Precambrian-Cambrian fossil filaments composed of aluminosilicates (e.g., Callow & Brasier, 2009).
However, the relative importance of trapping suspended clays versus clay precipitation in natural environ-
ments remains unknown, and trapping is thought to dominate (Konhauser et al., 1998; Konhauser &
Urrutia, 1999; Newman et al., 2016, 2017).

The late Precambrian and early Paleozoic fossil record includes a large number of clay-hosted Konservat-
Lagerstätten that preserve soft tissues as carbonaceous compressions, commonly with a secondary coating
of authigenic clays that appears to track the original organic matter (Briggs, 2003). The role of preexisting clay
in retarding decay appears to be more important for this style of preservation than the precipitation of early
authigenic minerals (Gaines et al., 2008). Al3+ and Fe2+ ions, for example, may stabilize organic matter by pro-
moting the crosslinking (“tanning”) of proteins or inhibiting the activity of autolytic enzymes (Butterfield,
1995; Petrovich, 2001; Wilson & Butterfield, 2014). Experiments have shown that polychaetes and crustaceans
buried in the aluminum-rich clay kaolinite for months-to-years are better preserved than those buried in
other minerals (Wilson & Butterfield, 2014; Naimark, Kalinina, Shokurov, Boeva, et al., 2016). Clays rich in
Al3+ and Fe2+ have likewise been shown to suppress the growth of various heterotrophic bacteria, including
representatives of the microbial community typically involved in tissue decay, providing the first clear evi-
dence of how clays might inhibit decay (McMahon et al., 2016; Morrison et al., 2016). Such interactions
may explain why particular clay mineralogies correlate with the presence or absence of fossils in some strati-
graphic sections (e.g., Anderson et al., 2014, 2018).

More generally, taphonomic factors identified as favorable for preservation in siliciclastics include reduced
microbial activity in sediments, the presence of iron, the type of clay, the activity of microbes in photosyn-
thetic mats, elevated concentrations of silica, redox gradients, and the activity of sulfate reducing microbes
that ultimately produce pyrite (Darroch et al., 2012; Gehling, 1999; Laflamme et al., 2011; Naimark, Kalinina,
Shokurov, Boeva, et al., 2016; Tarhan et al., 2016; Wilson & Butterfield, 2014). The effects of most of these fac-
tors need to be investigated further before we can infer their likely impact on Mars. However, our current
understanding suggests that Fe/Mg-rich detrital smectites in fluvio-deltaic and lacustrine deposits in ancient
lake basins on Mars provide a promising context for fossil and organic preservation, especially where Fe-rich
end-members can be identified (e.g., Ehlmann, Mustard, Fassett, et al., 2008; Hurowitz et al., 2017; Milliken &
Bish, 2010; Rampe et al., 2017; Vaniman et al., 2014).

Textural evidence of microbial activity occurs in siliciclastic lithologies from mudstone to sandstone and
ranges from patterned textures on bedding planes (“microbially induced sedimentary structures” or “MISS”;
Noffke et al., 2001) to three-dimensional stromatolites (Schieber et al., 2007). In the absence of direct evi-
dence of biogenicity, some MISS are difficult to distinguish visually from structures formed by sediment load-
ing, shrinkage or shearing, or by the interaction of sediment with currents, escaping pore water, or early
cements (Davies et al., 2016; Schieber et al., 2007). Others can probably only form via the growth of microbial
mats on sandy surfaces, whichmay wrinkle (Figure 1g) or crack subaqueously at scales that indicate microbial
aggregation or biostabilization (Gehling & Droser, 2009; Mariotti, Perron, et al., 2014; McMahon et al., 2017).
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Interactions between microbial surfaces, clay minerals, and microbial sulfide or silica at the surface of some
MISS can preserve organic matter and replicate ~100-μm-scale filamentous microfossils in clay minerals or
pyrite, even in relatively coarse lithologies (Callow & Brasier, 2009). MISS could be recognizable at distances
of several meters and would warrant investigation if detected. However, the hypothesis that such structures
may be visible in Curiosity images from the Gillespie Lake sandstone member within Gale Crater (Noffke,
2015) is not compelling. In common with Davies et al. (2018), we interpret the photographed features as
erosional/fracture surfaces, not bedding planes; where dust-free bedding planes are exposed on nearby out-
crops, they show no textural features attributable to microbial mats. Indeed, MISS may be difficult to recog-
nize on Mars because exposed bedding planes tend to be effaced by aeolian weathering.

2.7. Sedimentary and Diagenetic Iron Oxides

Iron oxide minerals are widespread on Mars. Remote sensing data have shown that hematite occurs in sedi-
mentary outcrops at Meridiani Planum, chaos terrains around Valles Marineris, and various locations asso-
ciated with interior layered deposits within Valles Marineris (Bibring et al., 2007; Christensen et al., 2000,
2001; Glotch & Christensen, 2005; Glotch & Rogers, 2007; Weitz, Lane, et al., 2008; Weitz et al., 2012).
Detailed orbital geologic mapping and in situ measurements at Meridiani Planum by the Opportunity rover
led to a consensus view that hematite in these locations formed through secondary diagenetic processes,
likely associated with regional groundwater upwelling (Chojnacki & Hynek, 2008; Le Deit et al., 2008;
Lichtenberg et al., 2010; Mangold et al., 2008; Massé et al., 2008; Murchie et al., 2009; Noe Dobrea et al.,
2008; Poulet et al., 2008; Roach et al., 2010; Squyres et al., 2004; Sowe et al., 2012; Wendt et al., 2011).
Hematite was recently identified within the sedimentary rocks on Mount Sharp in Gale Crater by both orbital
(Fraeman et al., 2013; Milliken et al., 2010) and in situ Curiosity data (Rampe et al., 2017). In contrast to other
hematite-bearing localities on Mars, hematite appears to be intimately associated with primary sedimentary
structures here, suggesting that it reflects pervasive secondary oxidation or authigenesis of hematite (or a fer-
ric precursor phase) in an oxidizing lacustrine environment (Hurowitz et al., 2017). Detailed measurements by
Curiosity are currently being used to test these end-member hypotheses.

Environments where hematite and other ferric iron minerals are precipitated have been considered thermo-
dynamically inimical to organic matter preservation because of a variety of complex mechanisms known as
Fenton reactions (Fenton, 1894). Fenton chemistry involves the reaction of peroxides with ferrous or ferric
iron to form free radicals, which rapidly oxidize organic molecules (Pignatello et al., 2006). On this basis
hematite-bearing rocks explored by the Mars Exploration Rover Opportunity in Meridiani Planum have been
considered to have poor organic preservation potential (Sumner, 2004). If peroxides (Encrenaz et al., 2012)
and perchlorates (Hecht et al., 2009) observed on the modern surface of Mars were similarly abundant early
in the planet’s history, then Fenton chemistry may have strongly limited organic preservation (and habitabil-
ity) in iron-rich environments. “Photo-Fenton” chemistry resulting from strong fluxes of UV radiation in
combination with peroxide, perchlorate, and hematite has been shown to be lethal to microorganisms
(Wadsworth & Cockell, 2017). However, molecular and morphological microbial biosignatures preserved in
association with iron minerals on Earth imply that the taphonomic influence of iron is not straightforward.
Hematite can aid the preservation of sedimentary organic matter under certain circumstances (Adhikari &
Yang, 2014). Evaporatively concentrated iron oxides in the acidic Rio Tinto fluvial system in Spain entomb
diverse microbes at the present day and have done so for millions of years, preserving cells, molecular fossils,
and microbial laminations in ferruginous siliciclastic sediments (Fernández-Remolar & Knoll, 2008; Preston
et al., 2011). Modern lipid biomarkers and permineralized microbial body fossils are also preserved by iron
minerals at Yellowstone hot springs (Parenteau et al., 2014; Parenteau & Cady, 2010).

Iron formations (sedimentary rocks with >15% Fe content) are abundant in Earth’s rock record from ~2.5 to
4 Ga (e.g., Trendall, 2002). Although the mechanisms that formed these lithologies are debated (including the
role of bacterial iron oxidation), it is widely thought that iron formations were deposited under a reducing
terrestrial atmosphere that permitted the dissolution, transport, and dissemination of ferrous iron across sedi-
mentary basins. The majority of Martian sedimentary outcrops known to yield ferric oxide do not resemble
terrestrial iron formations, but several studies have theorized their presence on Mars (Bridges et al., 2008;
Burns, 1993; Fallacaro & Calvin, 2006; Schaefer, 1996). The total organic carbon content of banded-iron forma-
tions on Earth is typically low compared to that of adjacent shales or carbonates (e.g., Klein & Beukes, 1989),
although carbonaceous material is associated with iron minerals in well preserved banded-iron formations as
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old as 3.2 Ga (Bontognali et al., 2013). Hematite coatings have been observed intimately associated with
organic-walled microfossils in the ~1.9 Gunflint and Biwabik Iron Formations and attributed to postdeposi-
tional precipitation from oxidizing fluids (Alleon et al., 2016; Shapiro & Konhauser, 2015), and iron minerals
have also been observed within Gunflint microfossil cell lumina (Lepot et al., 2017), demonstrating that iron
mineralization does not preclude cellular preservation in kerogen on billion year timescales.

3. Preservation of Molecular Fossils and Other Organics on Mars

Organic molecules were recently detected at the parts per billion level on the Martian surface, consistent with
the expectation that trace amounts (Flynn & McKay, 1990) should be present in the soil as a result of meteor-
ite falls throughout Martian history. Nevertheless, the Martian surface is a harsh environment for the survival
of organic compounds. Ionizing particles penetrate the surface and cause cascades of secondary particles
(Dartnell et al., 2007; Kminek & Bada, 2006). Curiosity’s Radiation Assessment Detector instrument revealed
that present-day radiation flux, penetrating rock and soil, is sufficient to destroy 99.9% of 100-atomic mass
unit biomolecules in the uppermost 4–5 cm within 650 million years (Hassler et al., 2014). The dose of radia-
tion received probably does not vary greatly with lithology (Kim et al., 1998), but molecules stabilized by diage-
netic processes and mineral interactions may survive for longer (as does organic matter in carbonaceous
chondrite meteorites, which are irradiated in space for millions of years; Hassler et al., 2014). Measurement of
cosmogenic nuclides by Mars rovers reveals the exposure age of rocks, enabling the search for organic biomar-
kers to be focused on themost recently uncoveredmaterials (e.g., Farley et al., 2014). An alternative approach is
to extract samples from beneath the irradiated zone; the ESA/Roscosmos ExoMars rover will carry a 2-m drill for
this purpose (Vago et al., 2017). Drilling to much greater depths (~1,000 m) would be necessary to allow access
to ancient permafrost water-ice unaffected by past warming events, which might contain cryopreserved bio-
molecules or even cells. Such an enterprise is not currently planned and would face significant engineering
and planetary protection challenges (McKay et al., 2013; Smith & McKay, 2005).

UV-promoted chemical oxidation, as well as ionizing radiation, removes organic matter fromMartian regolith.
In an attempt to rationalize the Viking experimental findings, Benner et al. (2000) hypothesized that the che-
mical environment on Mars was not conducive to the preservation of organic compounds. In particular, per-
oxides and hydroxyl radicals were likely continuously produced on Mars via Fenton chemistry that, today, is
widely used to clean up waste water. Further, these authors hypothesized that these strong oxidants would
progressively attack any organic matter on the Martian surface leaving only a residue of organic acid salts
including acetate, oxalate, and benzene carboxylates. Such salts would not be sufficiently volatile to be
detected by the thermal desorption/pyrolysis experiments conducted by Viking and Curiosity.

The Sample Analysis at Mars instrument suite on Curiosity detected limited organic compounds via pyrolysis-
gas chromatography-mass spectrometry and identified small aliphatic and aromatic organic fragments in
pyrolysis-evolved gas analysis experiments (Freissinet et al., 2015; Glavin et al., 2013; Ming et al., 2014), results
consistent with the survival of some macromolecular organic matter in Martian sediments, possibly residues
of ancient carbonaceous meteoritic infall (Flynn & McKay, 1990). The detection of chlorinated compounds in
these sediments may be a result of the reaction during pyrolysis of organic compounds indigenous to mud-
stone with highly oxidizing oxychlorine compounds also present in the environment (Freissinet et al., 2015;
Glavin et al., 2013; Ming et al., 2014). Measurements of cosmogenic nuclides revealed that the host mudstone
was exposed only 78 ± 30 million years ago (by scarp retreat) even though crater counting indicates that the
sediment was deposited 4.1–3.5 Ga (Farley et al., 2014). Thus, recent exposure may account for the survival of
the organics.

4. Preservation Potential of Plausible Mars Analog Microbes

The paleontological term “preservation potential” conventionally refers to the likelihood that a particular
taxon, tissue type, or molecule will enter the fossil record given suitable environmental conditions; thus,
the primary influence on preservation potential in this sense is the nature of the organism. Earth’s macro-
scopic fossil record is dominated by high-preservation-potential biomineralized animal skeletons, which ori-
ginated in the Neoproterozoic and rapidly diversified during the Cambrian and Ordovician Periods (Porter,
2007). However, the window of opportunity for such complex life to arise on Mars apparently closed early,
and the required innovations seem improbable given that eukaryotes appear to have arisen only once on

10.1029/2017JE005478Journal of Geophysical Research: Planets

MCMAHON ET AL. 1023



Earth (Summons et al., 2011; Westall, Foucher, et al., 2015). Crater count-based ages for valley networks on
Mars and the paucity of valleys in younger terrains suggest that the availability of surface water had dimin-
ished bymiddle-to-late Hesperian time (Fassett & Head, 2011), although results from the Curiosity rover show
that local-scale in situ observations are necessary to ground truth such global inferences (Grotzinger et al.,
2014, Grotzinger, Gupta, et al., 2015; Hurowitz et al., 2017). The period of peak water availability at the
Martian surface may thus have been 1–2 billion years before the origin of eukaryotes on Earth (Dacks
et al., 2016), and habitable environments on the Martian surface may have been more restricted than on
Earth since that time (Ehlmann & Edwards, 2014; Grotzinger & Milliken, 2012). Moreover, the low abundance
of free oxygen in the Martian atmosphere at any time in its history probably precluded the evolution of large,
multicellular organisms with differentiated tissues (e.g., Erwin, 2015). For these reasons, scenarios for poten-
tial life on Mars tend to involve anaerobic microbial models (e.g., Rothschild, 1990; King, 2015; Westall,
Foucher, et al., 2015). Anaerobic microbes thought to be capable of living in the conditions of early Mars
include methanogens, sulfate and sulfur reducers, photosynthesizers, fermenters, iron reducers, and photo-
trophic or denitrifying iron oxidizers (Cockell, 2014b; Nealson & Conrad, 1999; Nixon et al., 2013). Favorable
conditions for these kinds of organisms have been demonstrated for mudstones deposited in the lacustrine
environment of Gale Crater (Grotzinger et al., 2014).

The intrinsic preservation potential of microbial groups depends first on their resistance to physicochemical
decay, including degradation by heterotrophic microbes, autolytic enzymes, osmotic stress, heat, and irradia-
tion, and second on their tendency to serve as templates for the nucleation of minerals from the environment
or resulting from their own cellular metabolism. Research into the preservation potential of microbial groups
that could have lived on early Mars is at an early stage.

4.1. Methanogens and Sulfate-/Sulfur-Reducing Bacteria

Microbial methanogenesis and sulfate/sulfur reduction are inferred to be among the oldest metabolic strate-
gies on Earth (e.g., Bontognali et al., 2012; Shen et al., 2009; Ueno et al., 2006), but microbes that carry out
these metabolisms do not produce diagnostic morphological fossils because their cells are simple in shape
and lack robust sheaths. However, these metabolisms can generate strong isotopic fractionations in minerals,
organic matter, and fluids (Bontognali et al., 2012; Ueno et al., 2006; Williford et al., 2016). Microbial methane
is strongly depleted in carbon-13 relative to carbon-12. This signature has been reported in Archean sedi-
mentary organic matter (e.g., Eigenbrode & Freeman, 2006; Hayes, 1994; see Slotznick & Fischer, 2016 for a
discussion of other metabolisms that could have produced this signal), in Archean basalt fluid inclusions
(~3.5 Ga; Ueno et al., 2006), and in Phanerozoic carbonate generated by methane oxidation (Bristow &
Grotzinger, 2013; Campbell, 2006; Peckmann & Thiel, 2004). Sulfate and sulfur reduction can also result in
the formation of iron sulfide minerals that coat or replicate cells; when sulfate does not limit the rates of sul-
fate reduction, the resulting pyrite may be depleted in sulfur-34 relative to sulfur-32. Syntrophic consortia of
sulfate-reducing bacteria and anaerobic methane oxidizing archaea have also been found to mediate the
encrustation of cells with clay minerals in marine sediments (Chen et al., 2014).

4.2. Photosynthetic Bacteria

Other microbes—most importantly cyanobacteria, which use water as an electron donor—produce extracel-
lular sheaths that are robust against degradation and also provide a favorable locus for mineral nucleation
(e.g., Bartley, 1996). Although cyanobacteria-lacking sheaths also have a long fossil record, those that possess
them can promote their own preservation by precipitating and trapping clay minerals (Newman et al., 2016,
2017). In environments where iron(II) is abundant, the sheaths can become coated by iron oxides when
iron(II) is oxidized by photosynthetic oxygen (e.g., Parenteau & Cady, 2010). Cyanobacteria also trap and bind
carbonate grains that are cemented into characteristic coarse laminae; they are the primary builders of mod-
ern stromatolites (e.g., Reid et al., 2000). The degradation of exopolymeric material in the zones of sulfate
reduction also promotes the precipitation of finer, micritic laminae and cements these structures (Dupraz
et al., 2009; Vasconcelos et al., 2006; Visscher et al., 2000). However, textural differences between modern
stromatolites and most Archean and Proterozoic examples (Grotzinger & Knoll, 1999), differences in the sea-
water chemistry now and in the past (Bosak & Newman, 2003), and the late inferred timing of the evolution of
cyanobacteria (e.g., Magnabosco et al., 2018) make modern marine stromatolites and microbialites imperfect
analogs for structures from the early Earth or Noachian-Hesperian Mars.
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Earlier photosynthesizers on Earth are thought to have used reduced sulfur, hydrogen, iron(II), hydrogen per-
oxide, or organic acids as electron donors (Blankenship & Hartman, 1998; Konhauser et al., 2005). Microbial
communities enriched on these electron donors have been found to promote mineralization in experiments.
Like cyanobacteria, anaerobic iron(II) oxidizing phototrophs can become encrusted with iron minerals (Posth
et al., 2013; our Figures 3a–3c). These minerals include iron carbonate, silica, and microcrystalline iron miner-
als (Figure 3d), illustrating a fossilization mechanism that could occur in an anoxic environment rich in iron
and silica, potentially characteristic of early Mars. Similar experimental cultures enriched on hydrogen or
methane developmicrometer-thickmineral layers comprising 10-nanometer-sized particles after 1–4months
(Figures 4a–4c). These precipitates include calcite, dolomite, and minor amounts of clay minerals (Figure 4d).

More generally, although anoxygenic photosynthetic microbes lack thick cyanobacterial-like sheaths, they
can form cohesive, sturdy microbial mats replete with extracellular polymeric substances that trap sediment
grains and stabilize sediments (Bosak et al., 2013). The interaction of anoxygenic photosynthetic communities
with sediments and flowing water can therefore be expected to produce different morphological signals at
the sediment-water interface. The precipitation of authigenic clays and iron minerals within anoxygenic
photosynthetic communities requires more investigation in experiments and also hints at favorable condi-
tions for fossilization.

4.3. Other Iron Oxidizers

Other iron oxidizers can thrive in diverse settings where Fe2+ is brought into contact with electron acceptors
(including O2, NO3

�, ClO3
�, and ClO4

�). This metabolism fuels chemosynthesis by bacteria that form distinc-
tive, mineralized tubular sheaths and twisted or branching stalks of iron oxyhydroxides within centimeter-
thick mats (Chan et al., 2009, 2011; Edwards et al., 2004, 2011; Emerson et al., 2010). This bacterial iron

Figure 3. Scanning electron micrographs of cells and precipitates in cultures of anoxygenic photosynthetic microbes
enriched from the anoxic mud of Fayetteville Green Lake, NY. The cultures were enriched in a photosynthetic minimal
medium with the concentrations of major ions that matched those in Fayetteville Green Lake. The biofilms grew on quartz
sand in the presence of 1 mM Fe(II) under an atmosphere of 20% CO2 and 80% N2 at pH 7 on a 12-h day:12-h night cycle.
Green sulfur bacteria (Chlorobium sp.) are the main photosynthetic organisms in these cultures; other strictly anaerobic
microbes such as Geobacter, Acholeplasma, and Desulfomicrobium sp. are also present. (a) Cells heavily encrusted by
microcrystalline minerals. (b) Close-up of the nanometer-scale minerals covering surfaces of cells. (c) Remnants of a rod-
shaped cell encased in minerals. (d) Energy dispersive X-ray spectrum of precipitates marked by the white rectangle in
Figure 3a shows the presence of Fe, Si, Ca, and O. The dissolved silica was not added to the culture medium: the silica in the
precipitates around cells was derived from the quartz sand.
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oxyhydroxide transforms into hematite during diagenesis, and well-preserved examples have been
described from hydrothermal jaspers ranging in age from Ordovician to Cretaceous (Little et al., 1999;
Little et al., 2004; Little & Thorseth, 2002). Probable iron oxidizing organisms are represented by hematite
microfossils in rocks at least as old as 1.74 Ga (Little & Thorseth, 2002; Slack et al., 2007). The bacteria-like
microfossils of the ~1.9 Ga Gunflint Iron Formation are preserved on a compositional spectrum from
organic carbon to hematite, but it is debated whether the iron oxide represents an original metabolic
product or later diagenetic replacement (Planavsky et al., 2009; Shapiro & Konhauser, 2015; Lepot et al.,
2017). Hematite microstructures in the Archean Nuvvagittuq Supracrustal Belt in Canada, constrained to
4.3–3.8 Ga, have been interpreted as autofossilized iron oxidizers and thus as the oldest known microfossils
(Dodd et al., 2017). Their simple tubular morphology and parallel arrangement, however, are compatible with
abiotic alternatives (e.g., Garcia-Ruiz et al., 2003, 2009; Wacey et al., 2018), and a lack of information about
field relationships undermines the reported age and biogenicity. Furthermore, the carbon isotopic data
provided by Dodd et al. (2017) in support of claims for biogenicity are not distinguishable from abiotic alter-
natives (Bottinga, 1969; van Zuilen et al., 2002).

The capacity of hydrothermal Fe-Si systems to preserve organic matter in association with inorganic elemen-
tal, mineral and morphological biosignatures is poorly understood. Also unclear is whether the organic
carbon associated with these systems preserves diagnostic isotopic biosignatures. One study suggests that
autotrophic iron oxidation yields organic matter that is >15‰ lower in δ13C than organic compounds pre-
served in association with abiotic iron oxides precipitated in submarine hydrothermal settings (Kennedy
et al., 2010). This signature could be preserved in organic matter associated with iron oxides and has been
reported from iron-rich Jurassic concretions from a nonhydrothermal setting, which yielded δ13Corg values
of �20.55‰ (Weber et al., 2012).

Figure 4. Scanning electron micrographs of photosynthetic cultures enriched from the anoxic mud of Fayetteville Green
Lake, NY in the presence of methane (CH4) and hydrogen (H2). The cultures were enriched and grown on aragonite sand
in a photosynthetic minimal medium with concentrations of major ions that matched those in Fayetteville Green Lake.
The medium was reduced by 50-mM Na2S. All cultures were grown at pH 7, on a 12-h day:12-h night cycle. Cultures
enriched in the presence of H2 were grown under an atmosphere of 5% H2, 15% CO2, and 80% N2, those enriched on CH4
were grown under an atmosphere of 5% CH4, 15% CO2, and 80% N2. The cultures contain anoxygenic photosynthetic
microbes; cultures enriched on hydrogen also produce methane. (a) One-month old culture enriched on CH4. (b) One-
month old culture enriched on H2. (c) Four-month-old H2 culture. (d) Energy Dispersive X-ray Spectroscopy spectrum (a) of
the precipitates marked by the circle in Figure 4a. The cultures were grown in the absence of added clay minerals, but the
Energy Dispersive X-ray Spectroscopy spectrum (b) of the area marked by the circle in Figure 4b and X-ray diffraction
analyses suggests that clay minerals form in these cultures.
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Microbial oxidation of iron could have occurred on early Mars, given the abundance of reduced iron. Electron
acceptors may have been limiting; plausible candidates include nitrate (Stern et al., 2015) and perchlorate
(Glavin et al., 2013; Hecht et al., 2009), although the latter has not been shown convincingly to support the
growth of iron oxidizers (Nixon et al., 2012). If Martian iron oxidizing microbes were preserved in a similar
fashion to those on Earth, such structures might even be observable in situ by rover-mounted instruments.
Unlike silica-hosted carbonaceous microfossils that commonly occur as filaments and spheroids <10 μm in
diameter, microfossils preserved in iron oxide on Earth commonly exhibit textures with dimensions closer
to tens to hundreds of micrometers, which is the observational scale of Mars rover-based instrumentation
(Williams et al., 2015).

4.4. Iron Reducers

Microbial iron reduction has been implicated in the precipitation of authigenic clays in silica-rich deltaic sedi-
ments (Michalopoulos & Aller, 1995, 2004). Enhanced by the trapping of suspended clays, this process may
also have contributed to the preservation of some unicellular Neoproterozoic eukaryotes in Fe-rich berthier-
ine (Mus &Moczydłowska, 2000). Some iron reducers actively dissolve ferric clay minerals, liberating both iron
and silica, which can generate aggregates of authigenic clay and quartz around the metabolizing cells
(Metcalfe et al., 2013; Vorhies & Gaines, 2009). Future work may elucidate whether such processes could have
preserved fossils on Mars.

5. Long-Term Preservation on Mars

Entry into the fossil record is no guarantee of long-term preservation; fossils can be destroyed by weath-
ering, diagenetic alteration, and metamorphism in the deep subsurface. Heat and pressure result in the
recrystallization of mineral grains and the transformation of organic compounds into kerogen and ulti-
mately graphite. Almost all rocks on Earth of equivalent age to Noachian terrains on Mars have been
recycled by Earth processes including subduction. The isolated vestiges that remain have undergone
severe, and sometimes multiple, metamorphism but could contain metasedimentary graphite, highly dis-
ordered kerogens (e.g., Ohtomo et al., 2014; van Zuilen et al., 2003), or even graphitic inclusions in zircon
(Bell et al., 2015). Although the C-isotopic signature of these Eoarchean carbonaceous remains is similar to
some imparted by biological processes, abiotic interpretations are also consistent with the data (Bottinga,
1969; van Zuilen et al., 2003).

Mars, however, currently lacks global plate tectonics and may always have done so. A crust tens of kilometers
thick and very sporadic volcanism ensure that crustal materials are recycled very slowly; sedimentary rocks
older than any on Earth survive as evidence of this lack of recycling (Grotzinger & Milliken, 2012).
Older Martian crust has been pervasively fractured by impacts, baked by volcanism, and/or altered by
groundwater-rock reactions. The lack of tectonic subsidence, however, results in lower rates of burial, and
the temperature gradient with depth is lower than that on Earth, such that metamorphism is generally less
severe. The abundance of Fe-Mg smectites in Gale Crater mudstones (Rampe et al., 2017; Vaniman et al.,
2014) indicates burial temperatures of less than 100°C, above which these minerals would have been
diagenetically transformed. Low geothermal gradients in Martian sedimentary basins are also reflected in
the long-term persistence of opaline silica (Frydenvang et al., 2017; Yen et al., 2017), which recrystallizes
on Earth in a few million years in the presence of water (Tosca & Knoll, 2009). Likewise, aqueous alteration
assemblages, although widespread, are chemically juvenile, indicating that interaction with aqueous fluids
was limited (Tosca & Knoll, 2009), probably because of the long-term persistence of cold and dry conditions
(Shuster &Weiss, 2005). Nevertheless, this process could have dissolved and reprecipitated evaporites, poten-
tially destroying any fossils within them, and the inferred acidic composition of these fluidsmay have resulted
in the loss of some carbonate and phosphate minerals.

Physical weathering proceeds very slowly on Mars compared to rates on Earth, as evidenced by the survi-
val of Noachian craters, channels, and other topographic features that have been exposed since their
formation. Aeolian and freeze-thaw weathering, as well as water-related dissolution and leaching of
mobile elements, are prevalent but result only in surficial damage (Grotzinger et al., 2013; McLennan &
Grotzinger, 2008). In general, fossiliferous lithologies from early Mars would have a good chance of surviv-
ing to the present.
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6. Finding and Verifying Fossils

The search for microbial biosignatures in rocks more than a billion years old on Earth typically follows a three-
step protocol. First, promising outcrops are explored at macroscopic scales to establish a stratigraphic con-
text and identify sedimentary structures indicative of interactions between biological processes, sediment
transport, and mineral precipitation. Second, these are sampled for further analysis, usually beginning with
the study of petrographic thin sections (i.e., microscope slides), which may reveal candidate microbial fabrics
or even preserved cells and tissues. Third, microscale and nanoscale chemical and isotopic information is
acquired from candidate biosignatures in order to confirm and reconstruct the biological processes that con-
tributed to their formation.

An important goal of such work is to exclude the possibility that putative biosignatures are either recent con-
taminants or abiotic phenomena that merely resemble fossils. Most prokaryotes are morphologically simple
spheroids and filaments, and the interplay of abiotic mineral growth, geochemical reactions, and sediment
dynamics can generate convincing pseudofossils (e.g., Grotzinger & Rothman, 1996; Garcia-Ruiz et al.,
2003, 2009; Hofmann, 2004). Abiotic processes can also fractionate carbon and sulfur isotopes, and the
behavior of these isotope systems in Martian environments is not yet fully understood. Robust detection
of morphological, isotopic, or any other biosignatures on Mars would therefore require evidence of a
paleoenvironmental context and alteration history consistent with biology and incompatible with nonbiolo-
gical processes alone (Summons et al., 2011). Several authors have attempted to establish criteria for evalu-
ating the syngenicity, antiquity, and biogenicity of putative microbial biosignatures from Mars or Archean
Earth, emphasizing that similar protocols apply on both planets (e.g., Brasier & Wacey, 2012). As noted else-
where in this review, these protocols raise critical questions about purported 3.7-Gyr-old stromatolites and
3.8-Gyr-old filamentous microfossils on Earth (Dodd et al., 2017; Nutman et al., 2016), and about recently
hypothesized MISS in Mars surface imagery (Noffke, 2015).

7. Recommendations for Future Experimental Work

Future taphonomic investigations should incorporate our current knowledge of Martian (paleo)environ-
ments to better constrain Mars-specific conditions that can preserve or destroy biosignatures and organic
matter. There is a particular need for laboratory studies to investigate the impact of likely conditions in habi-
table environments on early Mars upon the taphonomy of microbial groups that could have been present,
such as those represented in Earth’s Archean record. Relevant environmental conditions include anoxic
CO2-rich atmospheres, sulfur- and iron-based redox gradients, high-salinity fluids, sulfates and other evapor-
ites, basaltic soil, Fe/Mg-rich detrital clays, oxychlorine compounds, and temperatures and pressures close to
the edge of the liquid water stability field. Experiments are necessary to explore microbially mediated clay
authigenesis, carbonate precipitation, and other drivers of fossil preservation under such conditions, and
to reveal which water-rock interactions in Martian subsurface environments are likely to be conducive to fos-
sil preservation. Postdepositional processes on Mars must also be considered, that is, the long-term preserva-
tion of organic molecules in organo-mineral associations in the presence of abundant chlorine, perchlorate,
and peroxide (Benner et al., 2000; Glavin et al., 2013; Navarro-Gonzalez et al., 2010). Although the degradation
of microbial cells and lipid biomarkers on the Martian surface has been investigated in simulated atmo-
spheres and radiation environments (e.g., de la Vega et al., 2007; Johnson et al., 2011; Kminek & Bada,
2006), such experiments have little relevance to biosignatures entombed within rocks and buried under a
radiation shielding but oxidizing soil layer for most of Martian history.

A new program of Mars-centric taphonomic experiments would reduce our reliance on imperfect analogies
between paleoenvironments on Mars and Earth. Experimental and theoretical considerations of processes
that operate in the absence of biology would also help us to avoid false positives by exploring the potential
of water-rock interactions to form abiotic pseudofossils under Mars-relevant conditions, including life-like
morphologies, mineral alteration textures, and porous-layered textures within silica sinters.

8. Conclusions

Previous studies highlighted numerous preservational processes, minerals, lithologies, and microbial groups
as targets in the search for life on Mars (e.g., Hays et al., 2017; Summons et al., 2011; Westall, Foucher, et al.,
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2015). However, planning for forthcoming rover missions requires that this search be optimized. Here we
have considered current understanding of (1) the occurrence and distribution of lithologies and minerals
on Mars; (2) the habitability of the environments they represent; and (3) the potential of these environments
to preserve the remains of organisms most likely to have lived in them, as revealed by studies of fossils on
Earth and experiments in the laboratory. On this basis, we recommend that iron-rich lacustrine mudstones,
especially those rich in silica, should be prioritized for biosignature exploration. These rocks are present on
Mars, represent aqueous environments with a range of redox states suitable for anaerobic metabolisms,
and offer the possibility of preservation by silicification, clay authigenesis, clay-organic adsorption, and iron
mineralization. Hot spring sinters are also an attractive target based on likely habitability and rapid mineral
precipitation, but their presence on Mars remains to be confirmed (Squyres et al., 2008; Skok et al., 2010;
Ruff & Farmer, 2016). Pores and fractures mineralized in the subsurface could represent a geologically
younger target, but more research is needed to determine whether they can be confidently identified on
Mars and whether appropriate Mars-analog organisms in such settings preserve reliable biosignatures, even
on Earth. Likewise, it has yet to be determined whether evaporites can rival lacustrine mudstones in their
potential to retain biosignatures for billions of years under Martian conditions.
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